Parameter Descriptions for ssdtools Functions
Arguments
- ...
Unused.
- add_x
The value to add to the label x values (before multiplying by
shift_x
).- all
A flag specifying whether to also return transformed parameters.
- all_dists
A flag specifying whether all the named distributions must fit successfully.
- all_estimates
A flag specifying whether to calculate estimates for all implemented distributions.
- at_boundary_ok
A flag specifying whether a model with one or more parameters at the boundary should be considered to have converged (default = FALSE).
- average
A flag specifying whether to provide model averaged values as opposed to a value for each distribution.
- bcanz
A flag or NULL specifying whether to only include distributions in the set that is approved by BC, Canada, Australia and New Zealand for official guidelines.
- big.mark
A string specifying used between every 3 digits to separate thousands on the x-axis.
- breaks
A character vector
- bounds
A named non-negative numeric vector of the left and right bounds for uncensored missing (0 and Inf) data in terms of the orders of magnitude relative to the extremes for non-missing values.
- chk
A flag specifying whether to check the arguments.
- ci
A flag specifying whether to estimate confidence intervals (by bootstrapping).
- ci_method
A string specifying which method to use for estimating the standard error and confidence limits from the bootstrap samples. Possible values include
ci_method = "multi_fixed"
andci_method = "multi_free"
which generate the bootstrap samples using the model-averaged cumulative distribution function but differ in whether the model weights are fixed at the values for the original dataset or re-estimated for each bootstrap sample dataset. The valueci_method = "weighted_samples"
takes bootstrap samples from each distribution proportional to its AICc based weights and calculates the confidence limits (and SE) from this single set. The valueci_method = "weighted_arithmetic"
(wasci_method = "MACL"
but has been soft-deprecated) which is only included for historical reasons takes the weighted arithmetic mean of the confidence limits andci_method = MGCL
which was included for a research paper takes the weighted geometric mean of the confidence limits. The valuesci_method = "MAW1"
andci_method = "MAW2"
use the two alternative equations of Burnham and Anderson to model average the weighted standard errors and then calculate the confidence limits using the Wald approach. Finallyci_method = "arithmetic"
andci_method = "geometric"
take the weighted arithmetic or geometric mean of the values for each bootstrap iteration across all the distributions and then calculate the confidence limits (and SE) from the single set of samples.- censoring
A numeric vector of the left and right censoring values.
- color
A string of the column in data for the color aesthetic.
- computable
A flag specifying whether to only return fits with numerically computable standard errors.
- conc
A numeric vector of concentrations to calculate the hazard proportions for.
- control
A list of control parameters passed to
stats::optim()
.- data
A data frame.
- delta
A non-negative number specifying the maximum absolute AIC difference cutoff. Distributions with an absolute AIC difference greater than delta are excluded from the calculations.
- digits
A whole number specifying the number of significant figures.
- dists
A character vector of the distribution names.
- est_method
A string specifying whether to estimate directly from the model-averaged cumulative distribution function (
est_method = 'multi'
) or to take the arithmetic mean of the estimates from the individual cumulative distribution functions weighted by the AICc derived weights (est_method = 'arithmetic'
) or or to use the geometric mean instead (est_method = 'geometric'
).- fitdists
An object of class fitdists.
- hc
A value between 0 and 1 indicating the proportion hazard concentration (or NULL).
- hc_value
A number of the hazard concentration value to offset.
- label
A string of the column in data with the labels.
- label_size
A number for the size of the labels.
- left
A string of the column in data with the concentrations.
- level
A number between 0 and 1 of the confidence level of the interval.
- linecolor
A string of the column in pred to use for the line color.
- linetype
A string of the column in pred to use for the linetype.
- llocation
location parameter on the log scale.
- location
location parameter.
- locationlog
location on the log scale parameter.
- locationlog1
locationlog1 parameter.
- locationlog2
locationlog2 parameter.
- log
logical; if TRUE, probabilities p are given as log(p).
- log.p
logical; if TRUE, probabilities p are given as log(p).
- lscale
scale parameter on the log scale.
- lshape
shape parameter on the log scale.
- lshape1
shape1 parameter on the log scale.
- lshape2
shape2 parameter on the log scale.
- lower.tail
logical; if TRUE (default), probabilities are
P[X <= x]
, otherwise,P[X > x]
.- meanlog
mean on log scale parameter.
- meanlog1
mean on log scale parameter.
- meanlog2
mean on log scale parameter.
- min_pboot
A number between 0 and 1 of the minimum proportion of bootstrap samples that must successfully fit (return a likelihood) to report the confidence intervals.
- min_pmix
A number between 0 and 0.5 specifying the minimum proportion in mixture models.
- npars
A whole numeric vector specifying which distributions to include based on the number of parameters.
- multi_est
A flag specifying whether to estimate directly from the model-averaged cumulative distribution function (
multi_est = TRUE
) or to take the arithmetic mean of the estimates from the individual cumulative distribution functions weighted by the AICc derived weights (multi_est = FALSE
).- na.rm
A flag specifying whether to silently remove missing values or remove them with a warning.
- n
positive number of observations.
- nboot
A count of the number of bootstrap samples to use to estimate the confidence limits. A value of 10,000 is recommended for official guidelines.
- nrow
A positive whole number of the minimum number of non-missing rows.
- nsim
A positive whole number of the number of simulations to generate.
- object
The object.
- parametric
A flag specifying whether to perform parametric bootstrapping as opposed to non-parametrically resampling the original data with replacement.
- p
vector of probabilities.
- percent
A numeric vector of percent values to estimate hazard concentrations for. Deprecated for
proportion = 0.05
.- pmix
Proportion mixture parameter.
- proportion
A numeric vector of proportion values to estimate hazard concentrations for.
- pvalue
A flag specifying whether to return p-values or the statistics (default) for the various tests.
- pred
A data frame of the predictions.
- q
vector of quantiles.
- range_shape1
A numeric vector of length two of the lower and upper bounds for the shape1 parameter.
- range_shape2
shape2 parameter.
- reweight
A flag specifying whether to reweight weights by dividing by the largest weight.
- rescale
A flag specifying whether to rescale concentration values by dividing by the geometric mean of the minimum and maximum positive finite values.
- ribbon
A flag indicating whether to plot the confidence interval as a grey ribbon as opposed to green solid lines.
- right
A string of the column in data with the right concentration values.
- save_to
NULL or a string specifying a directory to save where the bootstrap datasets and parameter estimates (when successfully converged) to.
- samples
A flag specfying whether to include a numeric vector of the bootstrap samples as a list column in the output.
- scale
scale parameter.
- scalelog1
scalelog1 parameter.
- scalelog2
scalelog2 parameter.
- scalelog
scale on log scale parameter.
- sdlog
standard deviation on log scale parameter.
- sdlog1
standard deviation on log scale parameter.
- sdlog2
standard deviation on log scale parameter.
- select
A character vector of the distributions to select.
- shape
shape parameter.
- shape1
shape1 parameter.
- shape2
shape2 parameter.
- shift_x
The value to multiply the label x values by (after adding
add_x
).- silent
A flag indicating whether fits should fail silently.
- size
A number for the size of the labels. Deprecated for
label_size
. #'- strict
A flag indicating whether all elements of select must be present.
- suffix
Additional text to display after the number on the y-axis.
- tails
A flag or NULL specifying whether to only include distributions with both tails.
- text_size
A number for the text size.
- theme_classic
A flag specifying whether to use the classic theme or the default.
- trans
A string of which transformation to use. Accepted values include
"log10"
,"log"
, and"identity"
("log10"
by default).- valid
A flag or NULL specifying whether to include distributions with valid likelihoods that allows them to be fit with other distributions for modeling averaging.
- weight
A string of the numeric column in data with positive weights less than or equal to 1,000 or NULL.
- wt
A flag specifying whether to return the Akaike weight as "wt" instead of "weight".
- x
The object.
- xbreaks
The x-axis breaks as one of:
NULL
for no breakswaiver()
for the default breaksA numeric vector of positions
- xlimits
The x-axis limits as one of:
NULL
to use the default scale rangeA numeric vector of length two providing the limits. Use NA to refer to the existing minimum or maximum limits.
- xintercept
The x-value for the intersect.
- xlab
A string of the x-axis label.
- yintercept
The y-value for the intersect.
- ylab
A string of the x-axis label.
- burrIII3.weight
weight parameter for the Burr III distribution.
- burrIII3.shape1
shape1 parameter for the Burr III distribution.
- burrIII3.shape2
shape2 parameter for the Burr III distribution.
- burrIII3.scale
scale parameter for the Burr III distribution.
- gamma.weight
weight parameter for the gamma distribution.
- gamma.shape
shape parameter for the gamma distribution.
- gamma.scale
scale parameter for the gamma distribution.
- gompertz.weight
weight parameter for the Gompertz distribution.
- gompertz.location
location parameter for the Gompertz distribution.
- gompertz.shape
shape parameter for the Gompertz distribution.
- invpareto.weight
weight parameter for the inverse Pareto distribution.
- invpareto.shape
shape parameter for the inverse Pareto distribution.
- invpareto.scale
scale parameter for the inverse Pareto distribution.
- lgumbel.weight
weight parameter for the log-Gumbel distribution.
- lgumbel.locationlog
location parameter for the log-Gumbel distribution.
- lgumbel.scalelog
scale parameter for the log-Gumbel distribution.
- llogis.weight
weight parameter for the log-logistic distribution.
- llogis.locationlog
location parameter for the log-logistic distribution.
- llogis.scalelog
scale parameter for the log-logistic distribution.
- llogis_llogis.weight
weight parameter for the log-logistic log-logistic mixture distribution.
- llogis_llogis.locationlog1
locationlog1 parameter for the log-logistic log-logistic mixture distribution.
- llogis_llogis.scalelog1
scalelog1 parameter for the log-logistic log-logistic mixture distribution.
- llogis_llogis.locationlog2
locationlog2 parameter for the log-logistic log-logistic mixture distribution.
- llogis_llogis.scalelog2
scalelog2 parameter for the log-logistic log-logistic mixture distribution.
- llogis_llogis.pmix
pmix parameter for the log-logistic log-logistic mixture distribution.
- lnorm.weight
weight parameter for the log-normal distribution.
- lnorm.meanlog
meanlog parameter for the log-normal distribution.
- lnorm.sdlog
sdlog parameter for the log-normal distribution.
- lnorm_lnorm.weight
weight parameter for the log-normal log-normal mixture distribution.
- lnorm_lnorm.meanlog1
meanlog1 parameter for the log-normal log-normal mixture distribution.
- lnorm_lnorm.sdlog1
sdlog1 parameter for the log-normal log-normal mixture distribution.
- lnorm_lnorm.meanlog2
meanlog2 parameter for the log-normal log-normal mixture distribution.
- lnorm_lnorm.sdlog2
sdlog2 parameter for the log-normal log-normal mixture distribution.
- lnorm_lnorm.pmix
pmix parameter for the log-normal log-normal mixture distribution.
- weibull.weight
weight parameter for the Weibull distribution.
- weibull.shape
shape parameter for the Weibull distribution.
- weibull.scale
scale parameter for the Weibull distribution.