vignettes/allometry.Rmd
allometry.Rmd
Here we plot relationships between Rainbow Trout metrics and fit a linear model to estimate the allometric ralationships for:
library(ggplot2)
library(broom)
fish <- kootlake::fish
is.na(fish$Weight[is.na(fish$Weight) | fish$Weight == 0]) <- TRUE
WL_mod <- lm(log(Weight) ~ log(Length), data = fish)
WL_data <- data.frame(Length = seq(min(fish$Length), max(fish$Length), length.out = 30L))
WL_data$Weight <- exp(predict(WL_mod, newdata = WL_data))
ggplot(data = fish, aes(x = Length, y = Weight)) +
geom_point(alpha = 0.4, size = 1) +
geom_line(data = WL_data, col = "blue") +
expand_limits(y = 0)
tidy(WL_mod, conf.int = TRUE)
#> # A tibble: 2 × 7
#> term estimate std.error statistic p.value conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) -18.4 0.128 -144. 0 -18.7 -18.2
#> 2 log(Length) 3.03 0.0200 151. 0 2.99 3.07
FL_mod <- lm(log(Fecundity) ~ log(Length), data = fish)
FL_data <- data.frame(Length = seq(min(fish$Length), max(fish$Length), length.out = 30L))
FL_data$Fecundity <- exp(predict(FL_mod, newdata = FL_data))
ggplot(data = fish, aes(x = Length, y = Fecundity)) +
geom_point(alpha = 0.5, size = 1) +
geom_line(data = FL_data, col = "blue") +
expand_limits(y = 0)
tidy(FL_mod, conf.int = TRUE)
#> # A tibble: 2 × 7
#> term estimate std.error statistic p.value conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) -12.1 0.875 -13.9 3.32e-20 -13.9 -10.4
#> 2 log(Length) 3.17 0.135 23.5 1.25e-31 2.90 3.44
FW_mod <- lm(log(Fecundity) ~ log(Weight), data = fish)
FW_data <- data.frame(Weight = seq(min(fish$Weight, na.rm = TRUE), max(fish$Weight, na.rm = TRUE), length.out = 30L))
FW_data$Fecundity <- exp(predict(FW_mod, newdata = FW_data))
ggplot(data = fish, aes(x = Weight, y = Fecundity)) +
geom_point(alpha = 0.5, size = 1) +
geom_line(data = FW_data, col = "blue") +
expand_limits(y = 0)
tidy(FW_mod, conf.int = TRUE)
#> # A tibble: 2 × 7
#> term estimate std.error statistic p.value conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 7.11 0.0577 123. 5.58e-50 6.99 7.23
#> 2 log(Weight) 0.955 0.0399 23.9 4.16e-24 0.874 1.04