Skip to contents

A list containing four data frames. Each data frame describes the required format for each data set. This is the raw non human readable version of the template used by the package developers.

Usage

template

Format

A list of the following four data frames:

1. location

A data frame with columns:

location_id

Location name for the camera

latitude

Latitude of camera location

longitude

Longitude of camera location

2. event

A data frame with columns:

location_id

Location name for the camera

start_year, start_month, start_day, start_hour, start_minute

Date and time when the event started

fa, f1, f0, fu

Count of female adults, yearlings, calves, and unknown ages

ma, m3, m2, m1, m0, mu

Count of male adults, 3-year-olds, 2-year-olds, yearlings, calves, and unknown ages

ua, u1, u0, uu

Count of unknown sex adults, yearlings, calves, and unknown ages

3. census

A data frame with columns:

census_year, census_month, census_day

Date of the census

census

Estimated census count

census_cv

Coefficient of variation (standard deviation / estimate) of census estimate

4. proportion_calf

A data frame with columns:

calf_proportion_year, calf_proportion_month, calf_proportion_day

Date of the calf proportion survey

calf_proportion

Estimated calf proportion

calf_proportion_cv

Coefficient of variation (standard deviation / estimate) of calf proportion estimate

Details

Raw data should be entered according to the template requirements. To use the template you will need to delete the name column and all rows except row 1 which contains the column names. Once only the column names are remaining your raw data can be entered into each excel sheet.

The name row provides the names of each column. The example row provides an example of the column. The description row provides a written description of the column. The chk row provides details on the constraints placed on the values of the column, which may include only allowing certain words, a range of values or certain types. The pkey row indicates which columns make up the primary key by putting TRUE in the column. The join row indicates if the table is a child table joined by the column.

For more details see the package vignette.

Examples

template
#> $location
#> # A tibble: 5 × 4
#>   name        location_id                     latitude                 longitude
#>   <chr>       <chr>                           <chr>                    <chr>    
#> 1 example     "RLBH006"                       57.895690000000002       -111.677…
#> 2 description "Location name for  the camera" Latitude of camera loca… Longitud…
#> 3 chk         "c(\"\")"                       c(50, 120)               c(-120, …
#> 4 pkey        "TRUE"                          NA                       NA       
#> 5 join         NA                             NA                       NA       
#> 
#> $event
#> # A tibble: 5 × 21
#>   name      location_id start_year start_month start_day start_hour start_minute
#>   <chr>     <chr>       <chr>      <chr>       <chr>     <chr>      <chr>       
#> 1 example   "RLBH006"   2019       11          23        14         35          
#> 2 descript… "Location … The year … The month … The day … The hour … The minute …
#> 3 chk       "c(\"\")"   c(2019L, … c(1L, 12L)  c(1L, 31… c(0L, 23L) c(0L, 59L)  
#> 4 pkey      "TRUE"      TRUE       TRUE        TRUE      TRUE       TRUE        
#> 5 join      "location"  NA         NA          NA        NA         NA          
#> # ℹ 14 more variables: fa <chr>, f1 <chr>, f0 <chr>, fu <chr>, ma <chr>,
#> #   m3 <chr>, m2 <chr>, m1 <chr>, m0 <chr>, mu <chr>, ua <chr>, u1 <chr>,
#> #   u0 <chr>, uu <chr>
#> 
#> $census
#> # A tibble: 5 × 6
#>   name        census_year             census_month   census_day census census_cv
#>   <chr>       <chr>                   <chr>          <chr>      <chr>  <chr>    
#> 1 example     2021                    3              31         250    0.05     
#> 2 description Year of census estimate Month of cens… Day of ce… Estim… Coeffici…
#> 3 chk         c(2019L, 2050L)         c(1L, 12L)     c(1L, 31L) c(1L,… c(0, 0.5)
#> 4 pkey        TRUE                    TRUE           TRUE       NA     NA       
#> 5 join        NA                      NA             NA         NA     NA       
#> 
#> $proportion_calf
#> # A tibble: 5 × 6
#>   name        proportion_calf_year     proportion_calf_month proportion_calf_day
#>   <chr>       <chr>                    <chr>                 <chr>              
#> 1 example     2021                     3                     31                 
#> 2 description Year of calf proportion… Month of calf propor… Day of calf propor…
#> 3 chk         c(2019L, 2050L)          c(1L, 12L)            c(1L, 31L)         
#> 4 pkey        TRUE                     TRUE                  TRUE               
#> 5 join        NA                       NA                    NA                 
#> # ℹ 2 more variables: proportion_calf <chr>, proportion_calf_cv <chr>
#>