Analyse
Usage
# S3 method for class 'mb_models'
analyse(
x,
data,
nchains = getOption("mb.nchains", 3L),
niters = getOption("mb.niters", 1000L),
nthin = getOption("mb.thin", NULL),
parallel = getOption("mb.parallel", FALSE),
quiet = getOption("mb.quiet", TRUE),
glance = getOption("mb.glance", TRUE),
beep = getOption("mb.beep", TRUE),
seed = sample.int(.Machine$integer.max, 1),
stan_engine = getOption("mb.stan_engine", character(0)),
niters_warmup = niters,
...
)
Arguments
- x
An object inheriting from class mb_model or a list of such objects.
- data
The data frame to analyse.
- nchains
A count of the number of chains (default: 3).
- niters
A count of the number of iterations to save per chain (default: 1000).
- nthin
A count of the thinning interval.
- parallel
A flag indicating whether to perform the analysis in parallel if possible.
- quiet
A flag indicating whether to disable messages and warnings, including sampling progress.
- glance
A flag indicating whether to print a model summary.
- beep
A flag indicating whether to beep on completion of the analysis.
- seed
A positive whole number specifying the seed to use. The default is random. This is currently only implemented for Stan models.
- stan_engine
A string specifying the Stan engine to use:
"rstan"
for MCMC sampling viarstan::sampling()
(default)."cmdstan-mcmc"
for MCMC sampling viacmdstanr::sample()
"cmdstan-pathfinder"
for pathfinder estimation viacmdstanr::pathfinder()
"cmdstan-optimize"
for optimization viacmdstanr::optimize()
"cmdstan-laplace"
for Laplace approximation viacmdstanr::laplace()
- niters_warmup
A count of the number of warmup iterations. The default is to use the same number of iterations as
niters
. This is currently only implemented for Stan models.- ...
Additional arguments.