Introduction
newdata
is an R package to generate new data frames for predictive purposes. By default, all specified variables vary across their range while all other variables are held constant at the default reference value. Types, classes, factor levels and time zones are always preserved. The user can specify the length of each sequence, require that only observed values and combinations are used and add new variables.
Consider the following observed data frame.
library(newdata)
obs_data
#> # A tibble: 3 × 9
#> lgl int dbl chr fct ord dte dtt hms
#> <lgl> <int> <dbl> <chr> <fct> <ord> <date> <dttm> <time>
#> 1 TRUE 1 1 most most most 1970-01-02 1969-12-31 16:00:01 00'01"
#> 2 FALSE 4 4.5 most most most 1970-01-05 1969-12-31 16:00:04 00'04"
#> 3 NA 6 8.2 a rarity a rari… a ra… 1970-01-07 1969-12-31 16:00:06 00'06"
Length of Sequences
By default all variables are held constant (length of 1).
xnew_data(obs_data)
#> # A tibble: 1 × 9
#> lgl int dbl chr fct ord dte dtt hms
#> <lgl> <int> <dbl> <chr> <fct> <ord> <date> <dttm> <time>
#> 1 FALSE 3 4.57 most not obs a rarity 1970-01-04 1969-12-31 16:00:03 00'03"
Specifying a variable causes it to vary sequentially across its range.
xnew_data(obs_data, int)
#> # A tibble: 6 × 9
#> lgl int dbl chr fct ord dte dtt hms
#> <lgl> <int> <dbl> <chr> <fct> <ord> <date> <dttm> <time>
#> 1 FALSE 1 4.57 most not obs a rarity 1970-01-04 1969-12-31 16:00:03 00'03"
#> 2 FALSE 2 4.57 most not obs a rarity 1970-01-04 1969-12-31 16:00:03 00'03"
#> 3 FALSE 3 4.57 most not obs a rarity 1970-01-04 1969-12-31 16:00:03 00'03"
#> 4 FALSE 4 4.57 most not obs a rarity 1970-01-04 1969-12-31 16:00:03 00'03"
#> 5 FALSE 5 4.57 most not obs a rarity 1970-01-04 1969-12-31 16:00:03 00'03"
#> 6 FALSE 6 4.57 most not obs a rarity 1970-01-04 1969-12-31 16:00:03 00'03"
The user can specify the length of each sequence.
xnew_data(obs_data, xnew_seq(int, length_out = 3))
#> # A tibble: 3 × 9
#> lgl int dbl chr fct ord dte dtt hms
#> <lgl> <int> <dbl> <chr> <fct> <ord> <date> <dttm> <time>
#> 1 FALSE 1 4.57 most not obs a rarity 1970-01-04 1969-12-31 16:00:03 00'03"
#> 2 FALSE 3 4.57 most not obs a rarity 1970-01-04 1969-12-31 16:00:03 00'03"
#> 3 FALSE 6 4.57 most not obs a rarity 1970-01-04 1969-12-31 16:00:03 00'03"
Observed Values and Combinations
The user can also indicate whether only observed values should be used in the sequence.
xnew_data(obs_data, xnew_seq(int, length_out = 3, obs_only = TRUE))
#> # A tibble: 3 × 9
#> lgl int dbl chr fct ord dte dtt hms
#> <lgl> <int> <dbl> <chr> <fct> <ord> <date> <dttm> <time>
#> 1 FALSE 1 4.57 most not obs a rarity 1970-01-04 1969-12-31 16:00:03 00'03"
#> 2 FALSE 4 4.57 most not obs a rarity 1970-01-04 1969-12-31 16:00:03 00'03"
#> 3 FALSE 6 4.57 most not obs a rarity 1970-01-04 1969-12-31 16:00:03 00'03"
The xobs_only()
function can be used to filter out unobserved values after the sequence has been generated.
xnew_data(obs_data, xobs_only(xnew_seq(int, length_out = 3)))
#> # A tibble: 2 × 9
#> lgl int dbl chr fct ord dte dtt hms
#> <lgl> <int> <dbl> <chr> <fct> <ord> <date> <dttm> <time>
#> 1 FALSE 1 4.57 most not obs a rarity 1970-01-04 1969-12-31 16:00:03 00'03"
#> 2 FALSE 6 4.57 most not obs a rarity 1970-01-04 1969-12-31 16:00:03 00'03"
With two or more variables all combinations are used.
xnew_data(obs_data, int, fct)
#> # A tibble: 18 × 9
#> lgl int dbl chr fct ord dte dtt hms
#> <lgl> <int> <dbl> <chr> <fct> <ord> <date> <dttm> <time>
#> 1 FALSE 1 4.57 most not obs a rar… 1970-01-04 1969-12-31 16:00:03 00'03"
#> 2 FALSE 1 4.57 most a rarity a rar… 1970-01-04 1969-12-31 16:00:03 00'03"
#> 3 FALSE 1 4.57 most most a rar… 1970-01-04 1969-12-31 16:00:03 00'03"
#> 4 FALSE 2 4.57 most not obs a rar… 1970-01-04 1969-12-31 16:00:03 00'03"
#> 5 FALSE 2 4.57 most a rarity a rar… 1970-01-04 1969-12-31 16:00:03 00'03"
#> 6 FALSE 2 4.57 most most a rar… 1970-01-04 1969-12-31 16:00:03 00'03"
#> 7 FALSE 3 4.57 most not obs a rar… 1970-01-04 1969-12-31 16:00:03 00'03"
#> 8 FALSE 3 4.57 most a rarity a rar… 1970-01-04 1969-12-31 16:00:03 00'03"
#> 9 FALSE 3 4.57 most most a rar… 1970-01-04 1969-12-31 16:00:03 00'03"
#> 10 FALSE 4 4.57 most not obs a rar… 1970-01-04 1969-12-31 16:00:03 00'03"
#> 11 FALSE 4 4.57 most a rarity a rar… 1970-01-04 1969-12-31 16:00:03 00'03"
#> 12 FALSE 4 4.57 most most a rar… 1970-01-04 1969-12-31 16:00:03 00'03"
#> 13 FALSE 5 4.57 most not obs a rar… 1970-01-04 1969-12-31 16:00:03 00'03"
#> 14 FALSE 5 4.57 most a rarity a rar… 1970-01-04 1969-12-31 16:00:03 00'03"
#> 15 FALSE 5 4.57 most most a rar… 1970-01-04 1969-12-31 16:00:03 00'03"
#> 16 FALSE 6 4.57 most not obs a rar… 1970-01-04 1969-12-31 16:00:03 00'03"
#> 17 FALSE 6 4.57 most a rarity a rar… 1970-01-04 1969-12-31 16:00:03 00'03"
#> 18 FALSE 6 4.57 most most a rar… 1970-01-04 1969-12-31 16:00:03 00'03"
To only get observed combinations use xobs_only()
xnew_data(obs_data, xobs_only(int, fct))
#> # A tibble: 3 × 9
#> lgl int dbl chr fct ord dte dtt hms
#> <lgl> <int> <dbl> <chr> <fct> <ord> <date> <dttm> <time>
#> 1 FALSE 1 4.57 most most a rari… 1970-01-04 1969-12-31 16:00:03 00'03"
#> 2 FALSE 4 4.57 most most a rari… 1970-01-04 1969-12-31 16:00:03 00'03"
#> 3 FALSE 6 4.57 most a rarity a rari… 1970-01-04 1969-12-31 16:00:03 00'03"
Add New Variables
Adding a new variable is simple.
xnew_data(obs_data, new = c(TRUE, FALSE))
#> # A tibble: 2 × 10
#> lgl int dbl chr fct ord dte dtt hms
#> <lgl> <int> <dbl> <chr> <fct> <ord> <date> <dttm> <time>
#> 1 FALSE 3 4.57 most not obs a rarity 1970-01-04 1969-12-31 16:00:03 00'03"
#> 2 FALSE 3 4.57 most not obs a rarity 1970-01-04 1969-12-31 16:00:03 00'03"
#> # ℹ 1 more variable: new <lgl>
Installation
To install the latest release version from CRAN.
install.packages("newdata")
To install the latest development version from r-universe.
install.packages("newdata", repos = c("https://poissonconsulting.r-universe.dev", "https://cloud.r-project.org"))
To install the latest development version from GitHub
# install.packages("pak", repos = sprintf("https://r-lib.github.io/p/pak/stable/%s/%s/%s", .Platform$pkgType, R.Version()$os, R.Version()$arch))
pak::pak("poissonconsulting/newdata")
Code of Conduct
Please note that the newdata project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.