Parameter Descriptions for ssdtools Functions
Arguments
- ...
Unused.
- add_x
The value to add to the label x values (before multiplying by
shift_x
).- all
A flag specifying whether to also return transformed parameters.
- all_dists
A flag specifying whether all the named distributions must fit successfully.
- at_boundary_ok
A flag specifying whether a model with one or more parameters at the boundary should be considered to have converged (default = FALSE).
- average
A flag specifying whether to provide model averaged values as opposed to a value for each distribution.
- bcanz
A flag or NULL specifying whether to only include distributions in the set that is approved by BC, Canada, Australia and New Zealand for official guidelines.
- big.mark
A string specifying used between every 3 digits to separate thousands on the x-axis.
- breaks
A character vector
- bounds
A named non-negative numeric vector of the left and right bounds for uncensored missing (0 and Inf) data in terms of the orders of magnitude relative to the extremes for non-missing values.
- chk
A flag specifying whether to check the arguments.
- ci
A flag specifying whether to estimate confidence intervals (by bootstrapping).
- censoring
A numeric vector of the left and right censoring values.
- color
A string of the column in data for the color aesthetic.
- computable
A flag specifying whether to only return fits with numerically computable standard errors.
- conc
A numeric vector of concentrations to calculate the hazard proportions for.
- control
A list of control parameters passed to
stats::optim()
.- data
A data frame.
- delta
A non-negative number specifying the maximum absolute AIC difference cutoff. Distributions with an absolute AIC difference greater than delta are excluded from the calculations.
- digits
A whole number specifying the number of significant figures.
- dists
A character vector of the distribution names.
- hc
A value between 0 and 1 indicating the proportion hazard concentration (or NULL).
- label
A string of the column in data with the labels.
- left
A string of the column in data with the concentrations.
- level
A number between 0 and 1 of the confidence level of the interval.
- linecolor
A string of the column in pred to use for the line color.
- linetype
A string of the column in pred to use for the linetype.
- llocation
location parameter on the log scale.
- location
location parameter.
- locationlog
location on the log scale parameter.
- locationlog1
locationlog1 parameter.
- locationlog2
locationlog2 parameter.
- log
logical; if TRUE, probabilities p are given as log(p).
- log.p
logical; if TRUE, probabilities p are given as log(p).
- lscale
scale parameter on the log scale.
- lshape
shape parameter on the log scale.
- lshape1
shape1 parameter on the log scale.
- lshape2
shape2 parameter on the log scale.
- lower.tail
logical; if TRUE (default), probabilities are
P[X <= x]
, otherwise,P[X > x]
.- meanlog
mean on log scale parameter.
- meanlog1
mean on log scale parameter.
- meanlog2
mean on log scale parameter.
- min_pboot
A number between 0 and 1 of the minimum proportion of bootstrap samples that must successfully fit (return a likelihood) to report the confidence intervals.
- min_pmix
A number between 0 and 0.5 specifying the minimum proportion in mixture models.
- npars
A whole numeric vector specifying which distributions to include based on the number of parameters.
- all_estimates
A flag specifying whether to calculate estimates for all implemented distributions.
- ci_method
A string specifying which method to use for estimating the bootstrap values. Possible values are "multi_free" and "multi_fixed" which treat the distributions as constituting a single distribution but differ in whether the model weights are fixed and "weighted_samples" and "weighted_arithmetic" take bootstrap samples from each distribution proportional to its weight versus calculating the weighted arithmetic means of the lower and upper confidence limits.
- multi_est
A flag specifying whether to treat the distributions as constituting a single distribution (as opposed to taking the mean) when calculating model averaged estimates.
- na.rm
A flag specifying whether to silently remove missing values or remove them with a warning.
- n
positive number of observations.
- nboot
A count of the number of bootstrap samples to use to estimate the confidence limits. A value of 10,000 is recommended for official guidelines.
- nrow
A positive whole number of the minimum number of non-missing rows.
- nsim
A positive whole number of the number of simulations to generate.
- object
The object.
- parametric
A flag specifying whether to perform parametric bootstrapping as opposed to non-parametrically resampling the original data with replacement.
- p
vector of probabilities.
- percent
A numeric vector of percent values to estimate hazard concentrations for. Soft-deprecated for
proportion = 0.05
.- pmix
Proportion mixture parameter.
- proportion
A numeric vector of proportion values to estimate hazard concentrations for.
- pvalue
A flag specifying whether to return p-values or the statistics (default) for the various tests.
- pred
A data frame of the predictions.
- q
vector of quantiles.
- range_shape1
A numeric vector of length two of the lower and upper bounds for the shape1 parameter.
- range_shape2
shape2 parameter.
- reweight
A flag specifying whether to reweight weights by dividing by the largest weight.
- rescale
A flag specifying whether to rescale concentration values by dividing by the geometric mean of the minimum and maximum positive finite values.
- ribbon
A flag indicating whether to plot the confidence interval as a grey ribbon as opposed to green solid lines.
- right
A string of the column in data with the right concentration values.
- save_to
NULL or a string specifying a directory to save where the bootstrap datasets and parameter estimates (when successfully converged) to.
- samples
A flag specfying whether to include a numeric vector of the bootstrap samples as a list column in the output.
- scale
scale parameter.
- scalelog1
scalelog1 parameter.
- scalelog2
scalelog2 parameter.
- scalelog
scale on log scale parameter.
- sdlog
standard deviation on log scale parameter.
- sdlog1
standard deviation on log scale parameter.
- sdlog2
standard deviation on log scale parameter.
- select
A character vector of the distributions to select.
- shape
shape parameter.
- shape1
shape1 parameter.
- shape2
shape2 parameter.
- shift_x
The value to multiply the label x values by (after adding
add_x
).- silent
A flag indicating whether fits should fail silently.
- size
A number for the size of the labels.
- suffix
Additional text to display after the number on the y-axis.
- tails
A flag or NULL specifying whether to only include distributions with both tails.
- trans
A string which transformation to use by default
"log10"
.- weight
A string of the numeric column in data with positive weights less than or equal to 1,000 or NULL.
- x
The object.
- xbreaks
The x-axis breaks as one of:
NULL
for no breakswaiver()
for the default breaksA numeric vector of positions
- xintercept
The x-value for the intersect
- xlab
A string of the x-axis label.
- yintercept
The y-value for the intersect.
- ylab
A string of the x-axis label.
- burrIII3.weight
weight parameter for the Burr III distribution.
- burrIII3.shape1
shape1 parameter for the Burr III distribution.
- burrIII3.shape2
shape2 parameter for the Burr III distribution.
- burrIII3.scale
scale parameter for the Burr III distribution.
- gamma.weight
weight parameter for the gamma distribution.
- gamma.shape
shape parameter for the gamma distribution.
- gamma.scale
scale parameter for the gamma distribution.
- gompertz.weight
weight parameter for the Gompertz distribution.
- gompertz.location
location parameter for the Gompertz distribution.
- gompertz.shape
shape parameter for the Gompertz distribution.
- invpareto.weight
weight parameter for the inverse Pareto distribution.
- invpareto.shape
shape parameter for the inverse Pareto distribution.
- invpareto.scale
scale parameter for the inverse Pareto distribution.
- lgumbel.weight
weight parameter for the log-Gumbel distribution.
- lgumbel.locationlog
location parameter for the log-Gumbel distribution.
- lgumbel.scalelog
scale parameter for the log-Gumbel distribution.
- llogis.weight
weight parameter for the log-logistic distribution.
- llogis.locationlog
location parameter for the log-logistic distribution.
- llogis.scalelog
scale parameter for the log-logistic distribution.
- llogis_llogis.weight
weight parameter for the log-logistic log-logistic mixture distribution.
- llogis_llogis.locationlog1
locationlog1 parameter for the log-logistic log-logistic mixture distribution.
- llogis_llogis.scalelog1
scalelog1 parameter for the log-logistic log-logistic mixture distribution.
- llogis_llogis.locationlog2
locationlog2 parameter for the log-logistic log-logistic mixture distribution.
- llogis_llogis.scalelog2
scalelog2 parameter for the log-logistic log-logistic mixture distribution.
- llogis_llogis.pmix
pmix parameter for the log-logistic log-logistic mixture distribution.
- lnorm.weight
weight parameter for the log-normal distribution.
- lnorm.meanlog
meanlog parameter for the log-normal distribution.
- lnorm.sdlog
sdlog parameter for the log-normal distribution.
- lnorm_lnorm.weight
weight parameter for the log-normal log-normal mixture distribution.
- lnorm_lnorm.meanlog1
meanlog1 parameter for the log-normal log-normal mixture distribution.
- lnorm_lnorm.sdlog1
sdlog1 parameter for the log-normal log-normal mixture distribution.
- lnorm_lnorm.meanlog2
meanlog2 parameter for the log-normal log-normal mixture distribution.
- lnorm_lnorm.sdlog2
sdlog2 parameter for the log-normal log-normal mixture distribution.
- lnorm_lnorm.pmix
pmix parameter for the log-normal log-normal mixture distribution.
- weibull.weight
weight parameter for the Weibull distribution.
- weibull.shape
shape parameter for the Weibull distribution.
- weibull.scale
scale parameter for the Weibull distribution.