This parameterization of the beta-binomial distribution uses an expected
probability parameter, prob
, and a dispersion parameter, theta
. The
parameters of the underlying beta mixture are alpha = (2 * prob) / theta
and beta = (2 * (1 - prob)) / theta
. This parameterization of theta
is
unconventional, but has useful properties when modelling. When theta = 0
,
the beta-binomial reverts to the binomial distribution. When theta = 1
and
prob = 0.5
, the parameters of the beta distribution become alpha = 1
and
beta = 1
, which correspond to a uniform distribution for the beta-binomial
probability parameter.
Arguments
- x
A non-negative whole numeric vector of values.
- size
A non-negative whole numeric vector of the number of trials.
- prob
A numeric vector of values between 0 and 1 of the probability of success.
- theta
A non-negative numeric vector of the dispersion for the mixture models (student, gamma-Poisson and beta-binomial).
- res
A flag specifying whether to return the deviance residual as opposed to the deviance.
See also
Other dev_dist:
dev_bern()
,
dev_binom()
,
dev_gamma()
,
dev_gamma_pois()
,
dev_lnorm()
,
dev_neg_binom()
,
dev_norm()
,
dev_pois()
,
dev_pois_zi()
,
dev_skewnorm()
,
dev_student()
Examples
dev_beta_binom(c(0, 1, 2), 10, 0.5, 0.1)
#> [1] 10.758196 5.136943 2.608386